Contributions from the Department of Biology, University of Western Australia-No. 9.

A Description of Two New Genera and Species of Phreatoicidea, with a Discussion of the Affinities of the Members of this Family, by George E. Nicholls.

(Reud July 13, 1926. Publishod August 31, 1926.)

Contents:

> Page
I. Introcluctory 179
II. Amphisopus, gen. nov. 182

IIT. Amphisopus, distribution 182
IV. Phreatoicus joyneri, sp. nor: 183
V. Phreatoicus joyucri, affinities 189
VI. Eophreatoicus, gen. nov. 190
VII. Eophreatoicus Rershawi, sp. nov. 191
VIII. Notes on the habits of some of the Phreatoicidea .. 197
IX. The position of Eophreatoicus in the Phreatoicidea .. 201

On the occasion of a slort visit made to Victoria in February of this year, I collected, during a week-end at Mt. Buffalo, a number of specimens of a species of Phreatoicus, with quite small eyes. These, while bearing a marked general resemblance to P. austratis, seemed nevertheless to differ from that form in quite a number of features. Since but one other speceies (1 . shephatrdi, which is eyeless), has been deseribed, hitherto, from the castern part of the Australian mainland, it was likely that these specimens would prove to be referable to a new species and, accordingly, as many as possible were secured.

They occurred in a varicty of situations; the first, a solitary specimen, was eaught in the waters of Lake Catani, its presence there probably accidental, for prolonged searcli failed to reveal others
there or under similar conditions in the waters of the New Reservoir. They were discovered, however, quite abundantly, partly embedded in almost dry mud which had formed the floor of a shallow puddle, at a spot where, in wetter seasons, a small creek discharged into the Lake. Here, under one quite small piece of decaying bark, nearly forty specimens were found curled up and motionless.* This creek, or investigation, was found to serve, in normal seasons, as the drain for a peat bog, under the mossy surface of which and in a small spring-fed hollow yet other specimens were taken. On the following day, the "Crystal Brook" was followed to its souree, near which, in tiny hollows between clomps of sphagnum, as well as in a narrow rumel emptying into the Brook, other, lighter-coloured specimens were captured. Another trip, this time to the "Horm," for the most part following the course of a small creek which proved to have its origin in a considerable bog that partly encircled the foot of the peak itself (where this rises abruptly from the Plateau), was equally successful. On this oceasion Phreatoicus was taken at a number of Cifferent spots, as well as quite freely in the bog at the foot of the "Horn,'" practically at the highest part of the Plateau. Indeed, several of the localities must have been at altitudes closely approaching five thousand feet.

The specimens taken from black peaty mud or from beneath the surface of the bog were much darker in colour and for the most part were densely infested with attached Rotifers, as well as by dise-shaped bodies which F fail to identify. In some cases a single seta may have its half-dozen attached forms, and these may largely ohscure the actual outline in setose regions. Others, taken from the open, are lighter coloured and much less heavily infested.

So plentiful as was this animal, of such conspichous size (exceeding 14 mm .), and with so widespread an occurrence, it seemed almost incredible that it could have escaped earlicr observation. Accordingly, on my return to Melbourne, I made enquiry at the Museum, where I leurned that there were apparently no records of specimens of Plreatoicus from the Buffalo region. I was, however, very kindly permitted to examine the Mluseum Collection of Freshwater Crustacea and satisfy myself of the absence of any such material from that part of Victoria. While engaged upon this search I happened upon a tube containing another Phreatoicid, unnamed, but, beyond all peradventure, nerr. This bore a locality label which indieated that the contained specimens were collected in

[^0]the Northern Territory, the first instance of a Phreatoicid from the Tropics. Hitherto, the most northerly records for this family were the Barrington Tops in N.S.W., S. Lat. 32°, Perth, in W.A., in the same Latitude, while P. latipes from South Australia was found at Coward, 29° South Latitude. The fossil form, diseovered at Newtown, Sydney quite probably ranged as far north as these.

At my request, I was most courteously allowed to remove certain of these Northern Territory forms for examination. They are described below, a new genus being required for their reception, the species being named in compliment to Mr. Kershaw. The species, taken at the Buffalo proved, likewise, to be new, this being named after my friend and enthusiastic fellow collector, Mr. A. E. Joyner, of Perth.

A consideration of these two new forms and a review of the structure of such other specics as I have been able to examine, has convinced me that the Australasian species referred, hitherto, to the genus Phreatoicus, fall into two quite definite and readily separable groups, sufficiently distinct to warrant their assignment to separate genera.

As was stated in an earlier paper (1924), it was only after very considerable hesitation that I had referrect the Western Anstralian form P. lintoni to the genus Plueatoicus, a hesitation which Dr. Chilton had previously expericnced when describing P. latipes.

Accordingly, I now propose to establish for all the lowland forms from Western and Southern Australia, a new genus Amphisopus, all these species having in common a number of features elsewhere found together only in the Amphipoda. To this new genus, however, the species from the Northerin Territory camot be assigued, nor does it fall within the aceepted definition of Phrealoicus; consequently the recognition of a sccond new genus seems neecssary and for this 1 propose the name Eophreatoicus. The remaining forms, distributed in the subterranean and surface waters of New Zealand, the Highlands of Tasmania, and the Sub-Alpine regions of Eastern Australia should, so far as I cau judge, be retained in the genus Phreatoicus Chiltou, the new species P. joyneri, also, properly belonging here. The position of P. capensis Barnard is uncertain, and in the absence of material I can come to no conclusion, but, judging from Barnard's figures (1914, Pl. 23, 24) and his deseriptions, I incline to the opinion that it will be found to occupy a position intermediate between Eiophratoicus and Plreatoicus. In some respects, indeed, it appears actually more primitive than either of these; a consideration of this matter is deferred, however, to a latcr chapter, where the inter-relationships of the several forms are discussed.

Amphisopus, gell. nov.

Body long', peracon sub-cylindrical, pleon markedly compressed. F'irst segment short, more or less finsed with the liead, which lacks a vertical groove near its posterior margin. Upper antema filiform, longer than pedmacle of lower antema, flagellum with ten or more joints. Lower antemna long, flagellum many jointed. Eyes large. Mandibles with : 11 appendage, right mandible retaining a reduced sceondary dentate edge. First maxilla with six or seven plumose setale on inner lobe. Leg's divided into an anterior series of fowr and a posterior series of three, the coxal joints searcely or not distinct. First pair of legs sub-chelate in both sexes, larger in the male than in the female; the fourth leg in the male not sub-chelate; basos of the three legs of the posterior series largely expanded. Pleon relatively longer than in Pheatoicus; the last segment almost, or completely, marked off from the telson. Coupling hooks on the basal joint of pleopords one and two; epipodites upon the third, fourth and fifth pleopods. In the male, a strongly curved penial filament on the cudopodite of sefond pleoporl, long and pointed, without terminal setac. Nlale appendage not setose. Uropods stout, biramous, styliform. Telson large, horse-shoe shaped in transrerse section, in profile suggesting a sub-conical body, without terminal projection, the dorsal margin entire, emarginate or cleft.

With tluree species:-

A. lintoni Nicholls (sp. typ.), Phreutoicus l., Nicholls, 1924, Jour. Roy. Soc, W.A., Vol. X, pp. 89-104, 1924.
A. latipes (Chilton), 1923, Plreatoicus l., Chilton, Trans. Roy Soc. S.A., Vol. 46, p. 23, Figs. 1-14; P.l., Glauert, Jour. Roy. Soc., W.A., Vol. X, pp. 49-57, 1924; P.l., Nicholls, Jour. Roy. Soc., W.A., Vol. X, Pl. 8, Fig. 3a, pp. 98-104, 1924.
A. phlustris (Clanert), 1924, Phreatoicus 1.., Glancrt, 1994, Jour. Roy. Soc., W.A., Vol. X, pp. 49-57; P.p., Nicholls, Jour. Roy. Soc., W.A., Vol. X, Pl. 8, Figs. 2, La, pp. 98-104, 1924.

Distribution. At the time when the original description of A. lintoni was written I had obtained my material from but a single locality, a small creck emptying into the estuary of the King River in Sonth-Western Australia. Subsequent rollecting trips showed that this species ocemrs freely in and around Albany itself, one fine specimen actually being taken in the Marine Drive, and more than a dozen different spots yiplded aboudant material. In some case these were found plentifully in mere puddes along the railway line, or in larger hollows at the foot of the hill near the swamps at the landward end of the Deep Water Jetty. Some of my larger specimens were taken practically at sea level, in a tiny rumel of fresh water within a half dozen patces of the spot where this discharged into the
sea. Yet others were secured from a small pool fed by a spring beneath a luge granite boulder, high up on the southern slopes of Mt. Clarence (Albany) and in its swampy overflow. A later trip made, in danuary, 192.) to Two People Bay, some thirty miles or so to the Eastward of Albany, resulted in the diseovery of this species as an abminautly occurring form in that locality.

At Denmark, thirty miles to the West of Albany, and at other places still more westwardly, to Normalup (nearly cighty miles), I have, however, searcherl in vain for this Pheatoicid, nor has it been found in the relatively abundant fresli waters of the Porongorup Ranges, some forty miles inland. Nor yet las any trace of it been seen in the Margaret River district at the sonthern end of the West Coast.

Amphisopus lintomi, then, misy be considered as likely to prove a relatively widespread form oceuring in shallow fresh waters near to the Coast of South-Western Anstratia from the virinity of Albany eastwards, but probably not existing in the dark peaty waters (locally, "coffee" water) of the more western "reeks and streams.

The known ratige of A. pulustris, too, is now greatly extended. It has been taken freely in many of the shatlow lakes in the environs of Perth. I lave collected it, also, from swamps and ditelies at Pinjarra, nearly sixty miles to the sontle, and near to York, some forty miles inland. In these two latter cases there are exhibiten differences which may prove to be of varictal value.

Concerning A, latipes mothing turther has been recorded since the publication of Chilton's paper in 1923.

Habits. An account of the habits of these and other Pluentoicids will be foum below.

Phreatoicus joyneri sp. nov., Plates XXV, XXVT, and Pl. XXIX, Figs. 40-44.
Specific Diegnosis. Body robust, surface smooth, with very few seattered lairs. Head somewhat shorter than combined length of first and second peraeon segments, produed into postero lateral lobe, which tonches maxilliped, with well marked vertical groove slightly proximal to hinder border. Kyes smill, romd, with few ommatidia.

Peracon sub-cylimdrical. Epimera (coxal joints) well developed. First segment very short in mid dorsal line, longer on veutral border, searecly fused with the head, second, third, and fourth segments efual, fifth and sixtle equal but shorter, seventh distinctly shorter.

Pleon moderately long, laving, with the telson, a length almost
exactly two thirds of that of combined cephalon and peracon. First segment as short as first peracon segment, sceond and third equal and longer than the first, fourth longer than preceding, the fifth decply notched posteriorly and twice the length of the fourth. The setal fringe practically confined to inferior margin. The ventral border of the sixth pleon segment armed ventrally with stout peetimate setae, which give place to spines at the postero-lateral corner; its overlapping posterior pleural border fused with the telson and forming a short sutural line bearing but three fine setae.

Telson large, horse-shoe shaped in transverse section, a well developed dorsal transverse depression defining the tip-tilted terminal projection, the latter armed with spines and setae and flanked on either side, at a slightly lower level, with strong spines. Ventrally the pleural margin of the telson is free from setae or spines.

First antema short, not as long as the peduncle of the second, with a flagellum of five joints in the male and but three in the female; sccond antema nearly half the length of the animal, almost as long as ecphalon and first five peraeon segments, peduncle barely half the lengtl of the flagellum, which may have from eighteen to twenty joints. Right mandible without secondary cutting edge, both mandibles with well developed curved spinous plate bearing a double row of denticulate spines.

Guathopods strongly sub-chelate, the palm oblique and armed with a series of spines which become broadened toward the proximal end of the joint into subtriangular serrated sentes. Sceond and third peracopods appear to be slightly prehensile; the fourth, in the male, quite strongly sub-chelate; in the female, the fourth resembles the preceding; fifth, sixth and seventh legs increasing progressively in length, the subtriangular coxal regions distinctly marked off, but coloured exactly as the related segments; basal joints rommed, little expanded. Pleopods $3-5$ with large endopodites; uropods long, peduncle bearing on its extremity, one thick and one slighter spine pectinated dorsally, rami slender, not very spiny.

Colour: Brown, generally very dark, with lighter (yellowish) markings; specimens taken in the open varying with the colour of the underlying mud, to light brownish or even yellowish grey. The legs may then he a light yellow in colour.

Length: Largest specimens (male) 14 to $15 m m$, none of the much less numerous females exceeding eleven millimetres.

Habitat: Taken in bogs, among the growth of sphagnum, also in weedy rumels among the tufts and roots of grass on the Mit. Buffalo Plateau, Victoria.

Detailed Description,-Eyes: Small, few (12-14) ommatidia,
apparently undergoing degeneration. The first antema (Pl. XXV, Fig. 2, Ea) remarkably short with, in the female, fewer joints than in any species of Phrcatoicus described hitherto. There is very little to distinguish the peduncle from the flagellam, the pemultimate joint of the latter being, in the fenale, relatively large and swollen, while the terminal joint is a mere knob. In the full grown mate there may be either fonr or fice joints, the second and third being subequal and larger than the other joints. Setae are not very abundant, but there is a small terminal tuft and an olfactory cylinder occurs upon both the terminal anl the penultimate joint in both sexes.* The scoond antenna (Pl. XXV, fig. 1, and Pl. XXIX, fig. 44) is sliglitly less than half the length of the body, the pednacle, with five joints, being amost exactly half the length of the flagellum, which has cighteen to twenty long, slenter, joints each set with a sub-terminal and ineomplete circlet of sctac; in the peduncle the first joint is short, the second, thifd fud fonrth increase progressively in length, the fifth being slender and as long as the third and fourth togetler.

The upher lip agrees closely with that of P '. austratis (Chilton, 1891, p. 156, Pl. 23, fig. 4). The mandibles, also are much as in that species, the right mandible laving but three teeth in the cutting edge. The spinous plate, however, on both mandibies (Pl. XXVI, fig. 12, 12a) is a cerved structure with a median groove ruming along its exposed face, on either side of which is a row of stont spines with well marked denticulations; on the left mandible these spines (16-18 in number) appear to be symmetrically arranged and similar, but on the right the spines along one edge (the posterior), are smaller and sharply bent. Betweer this plate and the molar tubercle are the nsual peetinate setae (two or three). On a level with the tuberele are a number of shont stiffe setae. Upon the palps some of the stoutest setae (Pl. XXVI, fig: 12, s) are strongly serrate on one margin and fringed with fine closely set hairs on the opposite edge. The lower lip (PI. XXVT, fig. 9) tiffers apparently from that of P. australis chicfly in that its inner margins are clothed with longer and stiffer setac.

The first maxilla (Pl. XXVT, fig. 8, 8a) also resembles closely that appendage in P. custrutis. Its onter lobe is broad with truncate apex set with eight or nine stont setae, some of which are denticulate. The imner lobe has the usual mumber (4) of phumose setae, agreeing in this with P. shephardi, P. kirhii and P. assimitis. P. australis is

[^1]said to have fom or fire such setae. In the latter species and in P. assimilis there are in addition two simple setae, while in P. shepherdi none are figmed; P, joyneri has one only.

The plumose setae in this form, howeror, are musually stout and densely set with a terminal tuft of setac (resembling rather the penicilla of Oniscids) and differing in this, if ome may judge from the figures, from the other speeies of Phreatoicus. Another differeno is furnished apparently by the preschee of a curved ridge (Pl . XXVI, fig. 8a) stretching along the surface of the inner lobe and bearing nomerous long setac. The structure of the second maxilla (Pl. XXV1, fig, 10) of P. joymeri is amost exactly that of the corres ponding appendage in P. austratis, exerpting that the inner lobe is marrowe distally, the onter lobe amd the waly having fewor sotace, Which are pectinate $i n$ the usmal manner' the nsual taft of setae at the base of the palp is mot to be manle out.

In the maxilipeds (एl. SXVI, fig. 11) the epipodite is perhaps mather broader and bears hot threw lateral setac. Wpou the imere plate two stout complinge spines only are prosent and alonge its whole free border it is frimged with long and stomt plumose setac, the apical setae being feebly plamose or pectinated: the imer distal angle, in both meros and carpms is motredly prodnced.
${ }^{T}$ The g gathopod (1'l. XXV, fig. 6) is of the usmal sub-chelate type. The limb is stout, the hasos havines a lemgth berely twice that of its greatest width; the anterion mingen of this joint is wholly free from setace, whereas in the sucereting appendages the corvesponding foint is strongly setose. In the adult make, the propod has almost oxactly the form of the rorrespontinge joint in P. custratis, but is free from setae on the lateral smbaces, while the posterior border proximal to the pathe is almost straight, whereas in P. australis it is fignred as concorr. The palm (Pl. XXV, fig. 6a) is raised into a nareow saw-like edge, the simple distal winiform setae passing into browlemed serrate sentes (S_{0}) at the more proximal emk. The dactyt las about ten, almost equilistant, satere on its comeave (posterior) margin, with four or five on the convex surface. A similar setose comblion of the dactyl is figmed (Chiltom 1894) for T^{\prime}. assimilis and faseribed (1892, p. 161) in P. australis, but is otherwise murecorded. There is a small terminal tuft of setae also, one of the these beinge sommehat similar to the semsory setae fomme on the first antembe and mamed 'olfactory cylinder'.' This subapical tuft is present on the suceeding appendages (Pl. XXT, fig. 7a) and, indeed, appears to be of rery genemal ocenerone in the Plateatoicidea, thongh redmeed apparently to il single sota in some species (ef. A. pulashis (Glaumet), 190.4, fig. 3). In the femmle, the appendage is very similar, but the propod is rather less strungly developed.

In the male, the three sucececting perucopods lave apparently developed a prehensile condition, though in varying degrees. ln the second thoracic appentage the proporl has a sub-rectangular outline, the anterior border being very slightly convex, the josterior with a small distal concavity furnished with setace. Proximally a couple of stout spines wonld meet the tip of the down-folded dactyl. This joint is stout and curver, its proxinal end set in a groove between distally produced extensions of the propod. The propod of the third appentage is ratler stouter", more comvex anteriorly, its posterior border more concave and hearing two pairs of froximally situated spines to receive the dactyl, with better developed guides for the base of the dactyl. The fourth peracopor has a very stont propod, convex along both borders, greatly produced distally on either side of the dactyl, thus hiding much of the base of this joint, which appears short and is stromgly curven. The tip of the dactyl has but a very reduced secondary monis and is received between a pair of powerful spines on the proporl. In all three of these appendages the anterior horder of the basos is heset with setae, the posterior border of the entire limb being strougly setose.

The three legs of the posterior group are, also, markedly setose; the basos, natrow at its origin, shows an expansion which is little marked in the foremost, more promomed in the posterior, himbs; the hinder margin of the foiut being furnished with moderately long setae; the large ischios expanded ahout the midalle of its length rather than distally; the meros widened distally; the two succeeding joints sub-rectangular, the propod being long and slender. The dactyl has a small secondary unguis whirh is flanked by a stout spine and a more slender seta. The coxal joints (epimera) of these thoracic limbs seem to resemble chosely those of P. austratis (Chilton, 1891, Pl. 23, fig. 1).

The paired male appendage (Pl . XXVI, fig. 13) on the last thoracic segment appeats to differ from the organ as described and flgured in P. australis in the possession of a number of setae regularly disposed along its mesial border. Such a condition is figured, however, for P. capensis.

Pleoporls (Pl. XXVI, figs. 14-16), The branchial appendages likewise differ somewhat from these structures in other species of Phreatoicus. In the first pair (Pl. XXVI, fig. 16) the nmmber (1314) of plumose setae is rather greater than in P. australis. The endopodites of the second (Pl. XXVI, fig, 14) are relatively longer, reaching to the end of the proximal joint of the exopodite and are searcely exceeded by the slightly curved penial filament, which bears a terminal tuft of four or five stiff setac. The distal lobe of the exopodite is fringed with about twenty plumose setae, while internal to its base, on the proximal lobe are cight phumose setace. Externally
the proximal lobe is beset with long sotace, of which only a few (12) of the more distal are plumose.

Upon the fattened face of this proximal lobe there is in one slecimen a slight ridge, set with setae rmming obliquely inwards from the lateral border. It has the position of the ventro-mesial border of the epipodite of suceceding pleopods :unt might conceivably indicate the fusion of an epipolite with that plate. The basal joint (protopodite) has stiff phumed setae on its mesial border only, whereas the hasal joint of the first pleopod has numerous setae both mesially and extermally. Upon pleopoda $3-5$, the epipodites are free :md of relatively latge size; the endopodites are long, extending to the base of the distal exopootite segment; the basal joint (protopodite) with a mesial lohe set with loug setac. Upon the proximal exopodite joint of the thired pleopod the number of plumose
 their (listal ends (oming well bow the inferior margin of the pleura of the pheon segments.* The ventral margin of the pleon segments 1-5 are fringed with long dexible setae which seareely extend onto the posterior borders. Cpoon the sixth segment (Pl, XXIX, fig. 42) these seta are representel by sermations or short pectinate spines which give place posteriorly to a few (3-4) stout spiniform setae. The pleme of the latter segment slightly overlap the telson externally and are fused with it. The fine of suture is quite distinctly raised and gives origin to but three delicate setare.

The uropotis (Pl, XXV^{7}, fig. 1, ant Pl. XXIX, figs, 42, 43) are wetl developed, a stont perlmele projecting backward to the level of the end of the telsom. Ventrally there are two thets of three setac, dorsally three or four almost equi-distant spines upon the onter border (fig. 43) ; two stouter spines upon the inner margin at its distal end (fig. 42).

At the extremity of the pedmele one or two spines are laterally phated, while ventrilly are thee spines-the immermost simple (fig. 42a), the middle very stont, with terminal pectination dorsally, and the outermost, smaller but also with terminal pectination (Figs, 4.3, 43a).

The rami are of nearly equal length, the outer slightly the shorter; each hours an apical spine and two or three setac, but the whole appendage is distinctly less setose than is usual in this genus.

[^2]Upon the dorsal smrace of the large telson the presence of a deep transverse rounded depression emplasises the upturned end, which bears a number of setae and is flanked ventro-laterally by a comple of stouter sjines on cither side ($\mathrm{Pl} . \mathrm{XXV}$, fig. 1, and Pl . XXIX, figs. 40, 41).

While the telson as a whole is concavo-convex in section, this tip-tilted terminal part has, in cross section, the slape of a long ellipse.

Remarks. This, the third sub-alpine species to be recorded from Eastern Australia, is in many ways intermediate between P. austratis and P. shephardi. So much is this the case that when, at first, I thought of the Mit. Buffalo form rather as a variety than a species, I could not decide to which of the two it should be referred. I have not, however, been able to examine any examples of P. shephardi, and the descriptions given by Sayce (1900) and by Chilton (1916) are too brief to make possible a detailed comparison between the two Victorian species. Judging from Smith's figmres (1909, Pl. 12, figs. 1-4) the Tasmanian forms of P. austratis are somewhat variable, and it may later become necessary to reduce P. joyneri to the rank of a varicty of P. australis, but for the present it seems advisable to regard it as distinct.

The proportion of length of pleon to that of combined cephalon and peraeon is almost exactly that given by Sayce for P. shephardi, but this ratio, according to Chilton, holds only for the female (and, presumably, for the immature male) of that species. The spinous condition of the ventral margin of its 6th pleon segment, likewise, resembles closely that of P. joyneri; in the latter, too, the sutural line between the 6th pleon segment and telson is shorter and less distinct than in P. uustratis ; in P. shephardi it is presmmably absent, being neither figured nor described. The perduncle of the seconit antema, imer lobe of the second maxilla, propod of first, fonrth and seventh peraeopods in the male of P. shophardi all approximate closely to the condition found in P. joyneri. The pleopods of the former species are not described.

From P. australis, the new Vietorian Phreatoicid differs in its larger size and more robust habit, its smooth body almost free from setae, the proportions of the pleon, the more elongated peduncle of the second antema, the condition of the spinous plate of the left mandible, the more setose lower lip, the tufted condition of the plumose setae on the imer lobe of the first maxillae, the shape of the inner lobe of the second maxillae, certain details in the three posterior legs, the endopodites of the pleopods, the less spinons condition of the mropods, and the shape of the outline of the inferior margin of the telson.

In the possession of but very fer joints in the first antennae, of a well marked vertical groove neal the posterior border of the head, and of stout pectinate spines at the base of the rami of the uropods, in the well developed condition of the coxae of the peraeopods, and the pronounced terminal projection upon the telson, it agrees with P, australis and seems to differ markedly from P. shaphardi.

In the reduction of the size of the eye and the fewness of the ommatidia, it represents a condition intermediate between the two Eastern Australian forms; in the smoothess of the body and the reduction of the setace it approardes the condition of P. assimitis, a state resulting probably from the operation of somewhat similar sheltered conditions of life.

Distribution. While P, australis occurs apparently widely spread in Tasmania at altitudes varying from sea-level to 4,000 feet, upon the mainlad it seems to have survived only upon Alt. Kosciusko (5,700 ft.). P, shephardi, first recorded from the Plenty Ranges in Southern Victoria, was subsecueutly taken, apparently abundantly, upon the Barrington Tops, in New South Walles, sous three to fom humdred miles to the north. P. joyneri ocenpies a small sub-alpine region within the range of both of these forms. It is probable that all of these species are survivors of a once wide spread form living at lower levels, hut later restricted, possibly due to secular cimatic changes, to small and isolated sub-atpine regions where they have undergone specific differentiation.

Eophreatoicus gen. hov.
Body scaly, wrinkled trimsversely; hoad short, with well marked rertical groove near posterior margin; eyes large; peracon slightly compressed, first segment short, more or less finsed with the head; pleon relatively longer than in I'lucatoicus, strongly laterally compressed, last segment searcely marked off from telson, terminal projection slightly developed. Upper tutenna as long as (longer than) peduncle of lower antema, flagellum with muncrous joints; lower antema stout, about one-third length of hody. Handibles with appendiage, secondary dentate eutting edge, spine row and molar tubercle. Legs divided into an anterior series of four displaying small coxal joint, and the meros with large anterior lobe; and a posterior series of three, with basos, ischios and meros strongly expanded. First pair of legs sub-chelate in both sexes, larger in the male than in the female, the fourth leg in the male sub-chelate. Pleopoda with exopodite and endopoodite sulbeegnal, with epipodite on all but the first, without couphing hooks; with curved penial filament on second pleopod strongly setose, not execeding endopodite. Uropod stont, slightly expanded, biranous, very setose. Telson,
horse-shoe shaped in transverse section, with margin entire, not npturned.

E. kershawi, spl nov, Plates XXVIT, XXVVII and XXIX, F'igs. 34-39.

Specific Diagnosis. Body robust, surface scale clad with very few scattered hairs, dorsal surface transversely ridged; head considerably shorter thin combined length of first and second peraten segments and with strongly marked vertical groove near posterior border. Eyes well developed, strongly convex, with many onmatidia. Peracon distinctly compressed, first segment narrow, widening somewhat ventrally, scareely free from head; second, third, and fourth segments sub-erpal, coxal plates small. Fifth, sixth, and seventh segments decreasing progressively in length, coxal plates scarcely distinct. Pleou long, having with telson a length slightly greater than four-fiftlis of that of combined cephalon and peracon and a greatest depth equal to the combined length of third, fourth, and fifth pleon segments. Two or three stiff setale on ventral margins of pleon segments; without setate on posterior margins. Sixth segment fused with telson, with but very short sntural line which bears no setae. Telson large, horse-shoe shaped in transverse section, without up-turned terminal projection, margin entire, with four stont spinules.

First antemit stont, longer than peduncle of lower antema, with as many as sixteen articuli, with sensory setae, but no olfactory cylinders; peduncle and proximal joints of flagellum with serrate margin (due to scales). Second antemna, two proximal joints stout, sub-equal, third and fourth slightly longer, sub-equal, fiftl slender, long as third and fourth combined; flagellum with as many as twenty-two joints, somewhat longer than peduncle; margin of entire appendage serrated. Right mandible with reduced and modified secondary dentate cutting edge, with spine row, molar tubercle with setae, palp with broad second joint. Lower lip ex tremely setose, scale-covered. First maxilla, imner lolse with sevelu plumose setae and one simple seta. Secoud maxilla, short and stout, inner plate sub-triangular, outer plate and palp with mesial margin reflexed distally, Maxilliped with two strong plumose setae on distal end of second joint, just internal to imer plate, the latter with row of 4 or $\overline{5}$ couphing hooks. Gnathopod with stout rounded basos, large ischios, propod strongly convex anteriorly, palm set with stout spines, occupying cutire posterior margin; dactyl long and straight, but sharply bent near base, with minute secondary moguis. Second, thitr and fourth peracopods with stout rounder basos bearing enteriorly at the froximal cud a small tuft of stout setae; ischios widest mesially owing to flattened expansion, meros produced into conspicuous autero-distal lobe, dactyl with secondary ungnis. In the male, fourth peracopor sub-chelate, a pair of stont
spines on propod receiving tip of dactyl. In the posterior series of peracopods, the Jengtl of the limb and the extent of the expansion of the three proximal joints increases progressively, the meros being proctuced into a notable distal lobe. First pleopod with endopodite and exopodite of equal lengtli; pleopods 25 with endopodite overlapping distal joint of exopodite and with epipodite. Sccond pleopod, in male, with penial filament, moderately curved, concave laterally, strongly setose with a considerable row of stout setae apically. Uropod stout, pedmele expanded on imer margin, very spinose on both margins; rami expander, spinose, imner the longer. Spine at base of rami not pectinate.

Colour: la spirit, yellowish-grey. The body generally is yellow tinted, with black dendritic spots scattered sparsely along the sides and still more sparsely mon the extremities of the limbs. In middorsal line and on cither side dorsally, these spots are closely aggregated to form three dark interrupted lines. In the perateon these may be continuous and alnost merge into one another, the marking then, in that region, may be deseribed as consisting of a paired dark dorso-lateral line separated by a light median yellow line bearing a dark spot at the middle of each segment. Laterally (externally) the dark bands may be defined by a thin and wavy yellow line.

Sizo: The largest male measured 21 mm., the smallest but 12 mm., with a width of peracon of 2.5 mm . About 25 per cent. of the specimens showed no male organ, the largest of these being 14 mm . in length, with a breadth of peraeon of 3.5 mm .; the smallest obtained measured 9 mm .

Locality: The collection of close upon a hundred specimens was made by W. MeLeman (in November, 1915) and was presented to the Musenm by II. L. White, Esq. The locality label indicates that the specimens were taken i_{11} a "small pool" at "Sandstone Bluff," Northern Territory. From notes, made by the collector, it would appear that the spot was on, or near, the Wellington Hills, E. long. $133 \frac{1}{2}^{\circ}$, S. lat. 12°. In other notes, kindly supplied by Mr. Kershaw, the pool is described as "a fine rock lole of clear, cool water.',

Detailed description. This species apparently attains almost to the largest size recorded for living aquatic Phreatoicids.* Of the mature ovigerons femate there are no specimens, the largest female in the collection reaching a length only two thirds that of the largest male. In this respect, this species appears to agree with

[^3]members of the genus Phrotoicus, whereas in Amphisomus the female is nearly as large as the male or may eren consillequbly exeeed that in length.

The body (Pl. XXVII, fig. 17) as a whole, appears to be covered with tiny flattened setate or scales, which sem to vary in shape from a broad triangular to nearly semi-circular, this covering giving everywhere to the body and largely to the appendages, when seen in profile, a serrated margin. This camot always be made out at the extremities of the limbs, and is less evident on mandibles and maxillae, but is clearly visible on flattened surfaces of lips, imer plate of maxillipeds, etc. In addition to the seales, the body appears to have a scattered gramlation, but the fine short setare that furnish a thin fur-like covering for the body in other species of Phreatoicus appear to be entirely absent.

A transverse corrugation of the surface is well marked, though less dereloped than appears, from Geoffrey Smith's figmres, to be the case in P. spinosus and other Tasmanian species. In all of these latter, too (including P. uustralis), Smith notes a serration of the antemae whirh is probably due to a retention of sales upon those appendages, although this is not stater. In the mainland species of Phreatoicus and in Amphisopus the scates have apparently disappeared.

The body attains its full width at the level of the second peraeon segment and maintains a practically uniform thickness to the seeond pheon segment, behind which there is but a very gentle tapering to the and of the body, so that although the pleon is quite deep, its depth is nevertheless only $1 \frac{1}{2}$ the thickness of the body in that region.

In yet another of the proportions of the boty, this species is probably generalised-the length of the pleon and telson is rather more than four-fiftlis of the length of combined cephalon and peracon, a condition contribnted to partly by the umsmal shortness of the head, but chiefly attributable to the relative uniformity in the longth of the body segments. Aleasured along the mid-dorsal line the pleon and telson together have a length equal to that of the seven free peraeon segments.

The head is strongly convex dorsally from side to side, and in profile is amost the quadrant of a cirele. The eye is very well developer, forming a lemisplerical prominence with probably not less than one hundred mmatidia. The inferior margin of the head is slightly prodned postero-laterally, where it tonches the maxilliped. From the posterior margin, a well defined groove runs upward nearly to the dorsal line. In P. australis, this is stated to actnally make a well defined transverse groove; in P. joyneri and P.
assimilis it is not completely transverse; in P. shephardi and P. typicus it is not figmed, nor is any reference made to its presence in P. kifkii. G. Smith likewise makes no mention of it in his aecome (1909) of the Tasmanian species. In P. typicus 1 should rather expect it to have disalpeared, but it will be surprising if it proves to be albsent in the otler species of Phreatricus. In all three species of Amphisopus it is certainly wanting, but, as Chilton has pointed out (1891 , p. 153) a quito similar groove is present in many species of Idotea, and it is reasonable to suppose that it marks the suture between the first peraeon segment (the maxilliped segment) and the head, a segment free in the Anaspidacea, but incorporated in the lead in Koonunge and Isopods generally, all traces of its original anterior boundary having been lost in most of the members of this latter groul. The first free segment of the peraeon of Phecatoicus is also by way of reduction and ineorporation in the head, a condition which has actually come about ins the Tanaidae.

In the peracon the cosal joints are greatly reduced and the antero-ventrat corner of the several segments is distinctly prodnced in front or perlaps is coming to lie external to the coxal joints. In the hinder series of legs a posterion cleft only partly defines the joint, which has become flattenes extermally and incorporated with the ventral margin of its related segment.

The pleon segments are relatively deep and unssially wide, the rentral borders almost and the posterior borders quite free from setae. The fifth segment is deeply notelned behind and is slightly shallower than the segment immediately preceding; the sixth, marked off from the telson only by a short suture ruming almost vertically mpward from the point of origin of the wropol. It makes with the telson a large piece terminating (Pl. SXIX, fig. 39) in a rounded projection which is not upturned as it is in most of the speeces of Phreatoicus. lts margin is entire and it is flanked laterally by a paired projection bearing a stont terminal and a slighter lateral spine. Ventrally the margin of the telsom bears on either site one large spine and a mold smaller spimme.

Appendages. The first antenna (Pl. XXV1I, fig. 18) is well dereloped, the peduncle searecly differentiated from the flagellum; the basal joint is large, the second as long but more slemder, the thire shorter, and little stouter than the pamixal article of the flagollum. The flagellnm may have as many as sixteen joints, mearly oblong in outline ant dininishing fairly regularly in lengtla, the terminal joint, however, being a mere knob. Sensory setae (Fig. 18, s) ocen on most joints, but the "olfactory setac' so characteristic of Phreatoicus conld not be recognised.

The seend antemac (Pl , XXVII, fig. 19) are stont, of (puite moderate length, with well defined peduncle (of a length approxi-
mately equal to the first antema), of five joints, of which the slender fifth is much the longest. In profile, the Hagellar joints are squarish, but a few of the more distal are quite stender; cati is incompletely encircled by setae.

Neither upper nor lower lip ealls for special comment. The left mandible (Pl, XXIX, fig, 34) las an outer cutting edge of four teetl and an imner series of three; immediately proximal to this latter is a curved spine row and beyond this the lower margin is setose. A well developed palp is present, the second joint, much the largest, being both broad and long. In the right mamdible (Pl, XXIX, fig. 35) the outer dentate row shows thee teeth only, the imer edge seems to be divided into two teeth, both of which are curionsly denticulate, the denticles in their turn pectinate. : In the natural position, this imner edge underlies a spinous row. In the figure, the molar tuberele is seem in profile and has two slender setae on its grinding face; internal to its lase are numerons setace.

The first maxilla (Pl. XXVIIt, fig. 29) is stout, the outer plate setose both laterally and mesially, and armed with an apical tuft of 10 or 11 stout pectinate spines in the usual double row, some being pectinated on both edges. The inner plate is strongly setose distally and upon its truncate apex bears seven terminal plumose setae, with one simple seta at its external end. Some of the plumose setae are of the type usual in Phreatoicus, but towards the mesial side some are apparently undergoing reduction, approaching a milateral condition.

The second maxilla (Pl. XXIX, fig. 36) is also stout; it shows the imer plate triangular and closely set with bent setae (distally directed), along the entire mesial length of one edge of its border, which is apparently flattened, from the other edge projecting a series of stiff, feebly ciliated setac. At the apex the two series meet and pass into a terminal tuft of eurved, plumed and pectinate setac (some plumose on one side of the axis and pectinate on the opposite). The palp appears to lave a well defined , joint and the entire outer border of the appendage is setose.

Maxilliped (Pl. XXVIII, figs. 27, 28). The epipodite is nearly round, with a few short setac inserted into its serrated outer margin, its mesial margin strongly setose. The second joint of the appendage bears two stont plumose setac and the mesial border of the inner plate is fringed with similar setae, which pass at the trumeate apex into stiff curved setac. These are doubly, and then singly, pectinate, and at the external angle become more curved, passing hy an easy transition into a series of five coupling hooks-strongly
re-chrved, with a forked apieal hook and more proximal (bursed pectinations (fig. 280°) ; the sealy surface is well seen here.

The gmathopod (Pl. XXVII, fig. 20) is of the usual type, the propod unusually strong, the palm straight, extending along the entire posterior border of the joint; both ischios and meros are expanded and protuced anteriorly into a lobe which is prolonged by a stout spine, the lobe of the meros being direeted almost proximally. In the three succeeding apperdages, also, these joints are notably produced, such considerable development of the meros being met with, so far as I can discover, in no other extant species of the Pheatoicidea. In the fossil form P. wienamattensis, however, a similar coudition is clearly shown, Chilton (1918), calling particular attention to this feature (1,c., p. 368).

The fourth peracopod (Pl, XXXII, fig. ©1) is sul)-chelate in the male, as in all species of Phreutoicus, diferering in this from Amphistipus, It is notenortly that in the perfeetly presserved fon the Wracopod of P. Wianmattensis there is no suggestion of a subcholate condition. lut the impression may, of cours, bave been that ot a female.

The fifth, sixth, aul seventh peraeopods (Pl. XXV1I, figs. 17, 22) show a romuded basos with a mar"ed posterior pate-like expansion and a similar expansion is developed on ischios and meros of both the linder appendages. The the fossil form a similar expansion is indieated (thongla less developed) in (hilton's figures $1,2,3,7$, and 10, and it is motewortly, also, that in this speries the ischios is relatively monch shorter than is nsual in this gemes. In this extinct form, too, it may be noted that the segments seem to have lead a much more uniform length.

The male appendage ($\mathrm{Pl}, \mathrm{XXIX}$, fig. 38) is a eurved structure, relatively short and stont, hearing a few setae on its anterior (more convex) border and with evident servated margin.

Ploopods. In the appendages of the pleon, the first point to be noted is that, in all, the two rami are appoximately equal, thi the sens. that the endopodite extends distally practically as far as the exopo iite, a condition fomm elsewhere, so far is I eam dissover, only in A. Iatipes. Further, in all but the first of these appeulages a lange epiportite is present. In two of the specimens examined I failed to find an epipodite mpon the third pleopon, but the plate is bery casily detached and possibly was lost in remorat. In mone of the sparimens exmined was an epipodite laking from the seeond pleops?, having there a sub-triangular shape; on sueceding appendages this plate is much larger :mb roughly guadrangular, fringed
with long setae, the postero-lateral corner "renate, with more closely set setace.

The endopodites are, as usual, thin transparent laminae without fringing setac, the exopodites (with the exception of that of the first pleopod) divided into a large proximal and an mosually short distal lobe. This latter is almost completely fringed with plumose setac, such setac being continned proximally along the greater part of the lateral border of the proximal lobe, passing prescutly into simple setae. On the mesial border a very few of the distal setae may be plumose, but the greater mumber are simple and these may extend from the edge on to the face of the plate as a thick bordering tuft (P1. XXYTr, fig. 25, ex.). In the male, the cudopodite of the second pleoporl is differentiated in the usual manner to form a penial filament. This consists of a stout basal picce and a semicylindrical distal portion, somewhat curved, concave laterally and fringed along both margins with fine setae. At the apex these pass " into a curved line of exceptionally stont setae to form a conspicuous terminal tuft (fig. 26, s.).

Both rami, and the epiportite when present, spring from a basal piece or pectuncle of rather indeterminate shape. In both first and second pleoporls, however, it is bilobed and suggests a two-jointed structure ; in the case of the first pleopod (Pl. XXVII, figs. 2\%, 24) long setae are present on both lobes mesially. On the lateral border but a single lobe is indicated. As regards size, the first pleopod is the smallest, the second somewhat larger, the third largest (Pl . XXVIII, fig. 31), the fourth and fifth progressively smaller (Pl. XXVIII, figs. 32, 33).

The uropods (Pl. XXIX, fig. 37) consist of a stout, relatively short peduncle, expanded dorsally on its inner border, both borders being produced into a continuous line of spines and setae. The inner ramus is also expanded and set with spines, the slightiy shorter; outer ramus less expanded. Ventrally to the origin of the rami are a eouple of setae, one being quite stont, but neither are pectinated as in Phreatoicus.

Notes on the Habits of some of the Phreatorcidea.

Geoffrey Smith, referring to the habits of the Tasmanian species of Phreatoicus, remarks (1909, p. 71):-"Their movements are exceedingly sluggish, so that when alive they are easily distinguished from the rapidly moving Amphipods...'' Of A. palustris, which I have kept muder close observation for some time, it may be said that while they normally ereep abont slowly or lie upon the side at rest (their colour harmonising wonderfully with that of the debris upon, or beneath, which they rest while feeding, and rendering them almost invisible), if disturbed they are capable of swift
movement, swimming rapidly with a quick, scurrying motion (effected apparently largely, if not entirely, ly the uropods), remarkably like the jerky movement of an Amphipod. Indeed, a small specimen may readily be mistaken, in its sidewise motion, for an Amphipod. Like an Amphipod, too, it may swim in the erect position, this, by the movement of the pleopods. The larger Western Australian form is, perlaps, sliglitly less agile.

Glauert notes of A. palustris (I924, p. 49) :-"The animals are fairly active and exceedingly quick at burrowing into the soft muddy bottom . . . When not burrowing (they) prefer dark or shady comers. Their food seems to consist of animal and vegetable matter, and they make most effective scavengers.'. I have offered small portions of dead earthworms, insect larvae, etc., but have never observed that this material has been touched. The preference for dark spots is particularly moticeable in the females, and, in romding up my specimens, those are practically always the last to be secured.

Pairing seems to extend over a comparatively long period, couples taken together have so continued for fifteen days subsequently, the brood pouch enlarging visibly during that period. In a small female of ahont 11 mm . the brood were discharged on the twenty-eighth day after the separation of the pair, no fewer tham fifty-one young issuing at that time. The male of this pair underwent ecdysis a couple of days prior to the emergence of the young, but the female had not shed her skin four weeks later when she was again pairing.

The process of ecdysis must have a considerable importance to these animals, even when full size is attained, if they are living in at comparatively small water hole, for, unter such conditions, they become thickly covered with encrusting organisms, even to the plumose hairs of the pleopors. In A. palustris a small Vorticellid is very common and oceasionally a Dendrocometes-tike form may be found, best seen on the east skin and apparently most affecting the antemae and the gnathopods. Barnard notes a similar infestation in P '. coponsis by "a short-stalked Infusorian," while Cliilton, also, remarks upon the heavily infested condition of P. australis. The dense covering of Rotifers, cte., in I^{\prime}. joyneri has been mentioned above. That the instinct for concealment is apparently more. strongly dereloped in the female is probably the explanation of the fact that collections usually contain a large preponderance of males tmess the collecting has been aceomplished by an indiseriminating use of the scoop) or net in the mutdy or weed-grentrin hiding places. Thus Chilton (1891, p. 165) notes ot his material of P. australis, "nearly two-thirds were undoubtedly males.' In the collection of Eophratoicus which I lave examined at least three-quarters were
mates, and in P. joynert (where I took all that I could see) at least as large a proportion are of this sex. Of the Hyperocdesipus mo my collection probalby less than of per cent. are femates, while of Hypsinctopus there is 10 recorl of the capture of females. The carly collections of I'heotoicopsis, also, comsisted wholly of mate specimens, but it should ber noted that, in most, if not all of these species, the male is the larger ats well as hess prone to concealment. In Amphisopus limtoni, on the other hand, my material showed an overwhelming preponictance of females. In this catse, however, the female attains to a size nearly twice that of the average male, and is perbaps less able to effectively conceal herselt. In the partly erown forms it is often not possible to distimgust between immature male and female by inspection only, and the dispropertion in mumers between the sexes may not be as great as would appear from the composition of a given contection. 1 n \quad. typicus the male is apparently monown.

In paring, as (ilanert has noted (l.ce.), the mate of A. palustris makes use of hiss strongly developed gnathopods, the fourth pair of peraeopods not being espectally modified in this gemes. I lave ohserved, however, that the rather hook-like peracopods of the anterior series, may all, at times, be "anght mader the projecting epimera of the female. The structure of the second and thised peraeopods of P^{\prime}. joyneri suggests that these have a sommewhat prehensile character.

Of Hyperoedesipus it is worthy of note that the remarkably developed gnathopods of the male seem never to be used for this purpose, the hold being effected entirely by the fourth pair. An obvious explanation is, however, at once fortheoming. The greatest danger to which a bilind, subterranean form such as this coudd be exposed, is that of boing swept inserveably to the sumface, there to be washed out to sea, or, cseaping that, allunst certainly to periskls in competition with, on a prey to, sulface living forms.* In uring pairing, when a domble strain might be imposed upem its earth hold, there is clearly a need, in the mati, for a greater muscular develop. ment of its gripping appendage. I have never seen Hyprocedestpus feeding on amimal matter, and I believe that the great grathopods are not raptorial. The fondll peratopod appears to be but slightly
*In the tiny hollow, in which atome I have found these forms, they have becen assoceiated with three other obvionsly undergromed forms (a small Amphipod, a planarian, and a minnte earthworm, probably a Phacondilid), from none of which would they be likely to lave much to fear in their subterrancan hames, execpting only for the competition for sucle food as there may be.
prehensile in P^{\prime}. assimilis, so that in this species one must suppose the gnathopods to be used in pairing. It would be of interest to know whether in P. australis and other surface-living forms the fourth peracopod has superseded the gmathopod in this function or is merely auxiliary thereto.

A comparison of the size of the brood in Amphisopus and Phratoicus is of interest. In I^{\prime}. shephardi, which reaches according to Sayce (1900) a length of 10 mm ., Chiltom records that the brood ponch contained a dozen eggs, while from the pouch of an 11mm. specimen of A. palustris I have collected more than fifty just emerged larvae. In a second case there were comnted forty-eight living young and one dead. From the brood pouch of A. lintoni there were extracted thirty-five large embryos. These facts suggest that alaptation to sub-alpine life has resulted not only in a stunting of the growth, but in a diminution, also, of the reproductive capacity. In none of my specimens of P. joyneri or E. Kershawi do the brood pouches contain eggs or embryos, and nothing has been recorded for other members of the family. The accommodation of the body to subterranean life will probably have restricted still further the number of the offspring. In Hyperocdesipus, of which very few females have been taken (probably for the reason suggested above in the case of A. polustris), the normal number of eggs is romul about four, though in one whiel paired in an aquarium, seven eggs were seen in the pouch when the animal was killed.

In A. palustris the embryos were a full 2 mm . in length at the time of their emergence, with the six pairs of peraeopoda usual in larval Isopoda. The body was almost transparent, of a palely brown tint, and a large proportion of the larvae appeared to bear one or more of the infesting stalked Infusorian, these having evidently spread on to the yonng while still within the brood-pouch. The embryos of A. lintoni were more than $1 \frac{1}{2}$ mm. in lengtll when as yet only the rudiments of the limbs could be discerned, and it is probable that the larvale would be at least twice that length. The first antenaae were short, consisting of a three jointed peduncle and a slightly clubbed flagellum with five joints, somewhat closely resembling the condition in adult P^{\prime}. australis or P. joyneri, which might be interpreted as evidence that, in this appendage, the sub-alpine forms have retained very nearly the larval condition.

After twenty-four days, the yomg died off quite suddemly, perhaps approaching the eriticat period of the first moult.

The brood pouch is composed of four pairs of lamellae, the first (intermal to the gnathopods) being unequally bilobed, the anterior lobe the smaller and making up much of the anterior wall of the pouch. In all of these lamellae there is a central stonter axis, around which is a broad and trimsparent margin (respiratory?),
fringed with numerous setale. In the full sized mates of Phreatoicopsis, there is a similar but smaller set of these lamellae, which are hard (appearing calcified) and he closely" adpressed to the ventral thoracic wall, of which they might be taken for mere thiekenings. These appear to have been altogether overlooked in carlier descriptions of this form.

The Pobition of Eophreatoicus in the Phreatoicidea.

Eophreatoicus hershawi, the type of the new gemus, is remarkable among known Phreatoicidea in the possession of a scaly covering, although, as pointed out above, it is possible that several species will be found to have rectained vestiges of this condition.

A slightly wrinkled state of the body is deseribed by Chilton as occurring in I^{\prime}. australis and is plainly figured by smith for several Tasmanian forms. Barnard does not mention it as characteristic of l^{\prime}. capensis, and in all the species of Amphisopus the body is wholly free from wrinkling, nor does it oceur in the subterrancau (New Zealand) specics of Phrotoricus and the altied subterranean genera.

The shortness of the head seems peculiar to this form, but is approached in A. palustris. The retention of large and prominent eyes, like those in Amphisopus, is donbtless indicative of continuons occupation of surface waters, the reduction of the eyes or the blind condition of the several sub-alpine or subterrancan forms having, perhaps, arisen indepeudently in those forms.

The vertical groove upon the head which, in my opinion, is to be regarded as the last evidence, in this family, of an originally free maxilliped segment, has already completely disappeared in Amphisopus. It is well developed in E. Kershawi, in P. capensis, P. australis, P. joyneri, P. assimitis and, therefore, presumably in P. Kirkii (vide Chilton, 1906, p. 274) ; very probably, too, in the several Tasmanian species, though smith makes no reference to it in his descriptions, but theu he does not figure it in P. australis, in which Chilton had previously described and figured it. Similarly has Sayce (1900) omitted all mention of this structure in P. shephardi, where it may perhaps be absent. If, howerer, it prove to be present in the Tasmanian forms and in P. shophardi, as I should expect, then P. typicus, alone in this genus, would be without it, but would share this peculiarity with Phreatoicoides, Hypsimetopus and Hyperoedesipus. All of these forms have a striking resemblance to P. typious, a likeness most readily to be explained by the suggestion that they all lave their deseent from a common blim ancestor already adapted to life in subterranean waters, which in its turn had derived froni a surface living form. That snch surface-living forms existed at a time while yet there may have been land communications between Australia, Tasmania and New Zealand is pructically established by
the discovery of those well preserved Phreatoicid fossils from the Trussic beds of N.S.W.

Ln the possession of filiform and relatively long first inntemmat, Etophreatoicus is again in agreement with $A m p h i s o p u s$ and in strong contrast with Pheatoicus and the gromp of subterranean general in hlis particular, I^{\prime}. capensis is in agreement with the Australian and Tasmanian forms (with the possible exception of I. spinosus).

A nearer approach to uniformity in the length of the segments (except the first firee peracon segment) ind, ats a consequence, the possession of a relativety long pleon-telson region, must be accounted as a primitive character in Éophreatoicus. \quad lu P. spinosus, the development of this region is said to be even greater, being, according' co Barnard (1914, p. 239), no less than gy per cent. of the length of combined eephalon and peracon. In this latter species, however, there is a remarkable development of the terminal telsonic projection, which adds the equivalent of the length of a segment to this region. Generally in the I'hreatoicidae the temel ney is towards a rectuction of the pleon region, a tendency which lais breome very pronounced in the Isopoda as a whole. In the members of this family, the pleon-talson region, expressed in terms of the pereentage length of combined cephalon and petacon, offers a series displaying increasing reduction. E. hershawi, $80^{\circ} \mathrm{E}$; P. tasmantae and P^{\prime}. copensis, $75 / 6-$
 P. lypicus, in a bunch varying from $66^{\circ} / \mathrm{r}-58 / 6$, and P. kirkii var. dunedinensis to 45%. In the related subterranean genera an even greater reduction is attained. In Hyperoedesipus the figure is 53%, in Hypsimetopus, 45%, and in Phreatoicoides, 36%. While agreeing with Chilton's remarks (1906, p. 275) that measurements of this kind are not easily made with the samo accuracy in all cases, and may vary to some extent in different individnals, I am of opinion, nevertheless, that such a series of stages in the reduction of the terminal body region as is found in the family is not witlout a distinct significance. In a form living in surface waters, A. palustris, as I have stated above, while the anterior peraeon appendages are largely functional in walking, aided (among debris), by the upthmed, backwardly directed and more clongate legs of the hinder series-for swimming the animal relies upon the pleopods with or without the uropods, the deep pleura having a definite importance in this method of locomotion. In subterrancan Isopods, if one may judge fiom Hyperoedestmus and Cruregens, the amimal creeps but acs
*In that generalised from Anaspides, the pleon-telson practically equals the cephalon-peraeon in length; in Koonunga the pleontelson would appear to be a trifle the longer, the maxilliped segment here completely merged in the head.
not swim, the importance of the pleon region thas being largely diminished. Perhaps, too, a rounded sub-eylindrical body is better adapted for negotiating the interstices through which the water percolates, for I imagine that the amimals' habitat is rather in such erevices than in actual subterranean lakes, and their entrance into wells might readily be through imperfections in the walls. There can be little doubt that Pheatoicoides may be taken at the surface for precisely the same reason as that which brings up Hyperocdesipus occasionally. Similarly a significance attacles to Chilton's statement $(1906,1$. 273) regarding the first finding of P. kirkii in "plates that have been well searched, for Mr. Thomson and myself, and probably many others, lave made collections in this locality without coming actoss the specinens in question." It woukd seem likely that this subterranean form comes only accidentally and rarely to the surface. Hypsimetopus is definitely recognised, as is Phreatoicopsis, as a dweller in damp earth rather than in subterranean water,* the latter quite possibly coming to the surface occasionally, perhaps, noeturnally. It has, it may be noted, the more usual proportions of surface-living forms (pleon-telson 60%), and its retention of eyes would suggest that its burrowing habit has been acquired comparatively recently.

The mandibles in Eopheatoicus seem more complete than in either Amphisopus or Phreatoicus, but the former, in the retention of the secondary dentate edge of the right mandible (even thongh in a more reduced condition) seems to approach more nearly to the condition of Eophreatoicus. In this particular, Phreatoicopsis and P. capensis are in agreement with Amphisopus.

In the condition of the first maxilla, with numerons (seven) plumose setae on the inner lobe, we are met again with what is, in all probability, a primitive condition, \dagger retained in Amphisopus, but undergoing reduction in Phreatoicus. P. typicus, however, is stated to have nine or ten of such setae, while P. Gustralis laas four or five (Chilton, 1894, p. 198, and 1891, p. 1.58) ; all other Australasian species of Phreatoicus lave but four plumose setac, but in every one of these (excepting P. (ypicus) there are said to be one or two setae which are not phmose. In Hyperocdesipus there are fomm
*It has recently been noted of another group of lsopods, that Haloniscus (a saltwater form) has a damp-earth representative (H : stepheni), whose burrows may, perhalps, give it access to water percolating beneath the dry surface of the creek (Nicholls and Barnes, 1926).
\dagger In Anaspides (vide Geoffrey Smith, 1909, pp. 507-511) this lobe bears numerous phmose setac, in Paranaspitles eleven are figured (l.e. fig. 13), in Lioonunga they are reduced to three.
with a number of simple setae, in Plereatocoides three and two simple spines. Hypsimetopus has a single spine, followed by a plumose seta and five others, peetinate and ciliate. Phreatoicopsis apparently has a large number (Spencer and IHall, 1897, p. 17). Amphisopus retains six or seven of these setae and again, in this, links up with P. copensis, which has four plumose, and two "phunose only at the tip."

Upon the outer plate of the appendage there are usually 8 or 9 setae in most Ploreatoicids, but in l^{\prime}. typicus they are described as numerous (about it are figured) ; in E . kershawi I find eleven. A large number is similarly present in the Syncarida, Foomungu once more showing but a fers. In the retention, then, of a large number of setae upon the lobes of the first maxilla, both Eophreatoieus and Pheatoicus (ypicus may be regarded as preserving the more generalised condition.

In the coupling looks of the maxillipeds there is again a suggestion of a loss of parts, there being 4 or $\overline{3}$ in Eophreatoicus, 3 in Amphisopus and P. austratis, ${ }^{3}$ or 3 in P. caponsis, P. typicus and P^{\prime}. joyncri, with but 2 in P^{\prime}. assimilis. lin Phrentoicopsis the pectimate setae at the apex are saill to contime down the outer border of the imner plate (as in Eophroutoicus), and basally are three strong setae which are not hooked.

The condition of the gnathopod "hand,' with its straight, illdefined palm and scarcely modified dactyl, may be regarded as displaying a primitive simplicity. Further, the largely expanded state of the meros is, as pointed out above, an musual feature in living Phreatoicids, but strikingly seen in the extinct P. wianamattensis. Something approaching it is seen in Amphisopus and in P. capensis. Chilton's figmres suggest that, in the fossil form, the basos of the muterior as well as of the posterior series of legs was expanded.

The apparent small size of the coxae, also seen in Amphisopus, should probably be regarded as due to rednction. The much more apparent condition of these structures in Phreatoicus may, however, be due to the lesser degree of development of the protective (epimeral) margin in burrowing and Cryptozoic forms, and a consequent greater exposure of these joints, but I am inclined to consider it as the more primitive condition.

A well developed sub-chelate coudition of the fourth peracopod in the male it shares with Phreatoicus and Hyperoedesipus, this condition being but slightly indieated in A. Tintoni, and the modifieation of this appendage is not much greater in P '. copensis. In Amphisopus, Phrectoicopsis, Hypsimetopus and Phreatocoides the appeudage is apparently ummodified.

The persistence of epipodites upon four of the five pleopods furnishes still further evidence of the primitive condition of this form. The practical equatity of the two pleopod rami would perhaps bear the same interpretation; a condition most nearly approaching this being found in A. latipes. P. capensis and Hypsimetopus. In other forms the endopodite shows rarying degrees of development. A feature to which little attention has been called, but which, nevertheless, seems to be unifue in this family, is the development of plumose setae upon the eurloporite in P. copensis (Barmard, 1914, Pl. XXIV).

In the contition of the penial filament of Eophreatnicus there is fmonshed yet another linking characia. Moderately curved, as long as its endopodite, aud set with a conspicuous tuft of terminal setae, it exhibits a condition intermediate between that of Amphisomus (strongly curven, longer than the endopodite and without terminal setac) and that of Phreatoicus-little curved, shorter than the endopodite, and with a smaller tuft of terminal setar.

The absence of coupling hooks upon the basal joints of first and second ptoopoda in Eophreatoicus is possibly primitive, and comstitutes one distinction between this genus and Amphisopus, which alone, in this family, pussesses such structures. What are perhaps comparable structures are seen on the hasal joint of the second pleopod in Koomunge, and coupling hooks are somewhat widely and variably distributed thronglout the Isopoda.

The expanded condition of the uroporda, both in pedunde and rami, of Eophreatoicus, is not met with cosewhere in the Phrecttoiciden, and finds, perhaps, its nearest compurison with the condition in the Syncarita, where, however, the expansion is notable. In Eophreatoicus it is obvionsly only an expanded condition of a styliform structure.

The practical absence of a terminal projection to the telson is, on the other hand, : new point of agreement with Amphisomus, as also, with Pheretoicopsis, and indeed, the profile of this region in Eophreatoicus is strikingly like that of P. wianamallensis, but is, perhaps, not primitive, if the terminal projection is the vestige of the elongate telson aif a Syncaridan-like nucestor.

A consideration of these several points justifies, I helieve, the separation of the more typieal lhreatoicids into at least three genera--of which Eophreatoicus ma: be regarded as occupying the central position* and from which may be derived, on the one hand, Amphisopus, and, upon the other, Pheratoicus, as exemplified by P. australis.

[^4]The more robust habit of Eophreatoicus links it with the larger Tasmanian forms, with Amphisopus, and, also, with the still larger P. wianamatlensis. Phratoicopsis conld readily derive directly from the extinct form.

Amphisopus differs from Eophreatoines principally in the loss of certain structures, notably the seales, and the epipodite upon the second pleopod; in the development (or retention?) of coupling hooks upon first and secom pleopods, the structure of the penial filament, in the more complete degradation of the coxae of the peraeopods, in the absence of the sub-chelate condition of fourth peraeopod in the male, and the greater degree of expansion attained by the basos of the linder legs.

Phreatoicus, chimbing from the plains to sub-alpine regions, has diminished in size, has retained into adult life the larval or juvenile combition of the first antemae. A less compressed peracon and smaller tergites permit of a greater exposure of the coxae, the palm has become restricted to the more distal portion of the propod, the eyes have dwinded and disappeared, the expansion of the several joints of the peracopods has mulergone more or less retrogression, while the prehensile character of the fourth peracopod of the male has, perhaps, becone more evident. A synchronons, or perhaps an earlier, change of habit may be supposed to have led to the modification of the burrowing forms, and thence to the occupation of subterranean waters, a change which may reasonably be presumed to have come about independently at different times and places.

In favour of the alternative view, that a form somewhat closely akin to P. typicus, but still possessed of eyes, wonld more nearly resemble the ancestral condition, the following features in that species might be cited as primitive:-the large lead, a first peraeon segment searcely smaller* than the suceceding (well seen, too, in Hypsimetopus and Phectoicoides, and less evident in Phreatoicopsis), well developed coxale, basos rounded and without expansion, first maxilla witl numerous plomose setae on inner lobe and still more mumerous spines on outer lobe (equally well seen in Phreatoicopsis), pleon little compressed and without marked pleura, and terminal telsonic projection. Further, a shortened condition of the pleon appears to be of very general occurrence in the Isopoda and might reasonably be presumed to characterise the primitive Phreatoicid. Sub-alpine forms surviving in widely seattered localities might well he extremely ancient (as the admittedly generalised Anaspides) and have given rise to newer forms in lowland combtry, stray specimens washing down from high levels, the survivors modergoing modifications in adaptation to their new conditions. The mountain forms

[^5]upon the Anstralian mainland all live, apparently, "reeping beneath moss in highly shelterel sithations, 1 ll open waters, with more active life and probahly a more abundant food supply, adaptation might bring about the larger borly, the expanded joints as abds to swimming, larger swimming and respiratory pleopods, the consequent increased importance of the pleom and a greater fecundity. In this view the short, almost chbbed first antemme of the larval stage of Amphisopus would appear merely as recapitulatery, the sealy clothing as a flattening and shortening of the fine fur-like covering of setae of the highland forms, The setae of the basal joints of the pleopots could be transmuted to coupling looks, as those mon the maxilliped (in Eophreatoicus) appear to have been.

Many of the more important differences to be observed between Eophratoicus and the sub-alpine speecies of I'hreatoicus appear, however, to be more reasomably interpretable as due to loss and retrogression in the latter gemus. So far as it is possible to judge, the very ancient P. widnmmettonsis would seem to find its nearest living comnterpart in Eophreatoicus.

In the consideration of this chestion the structure of the Sonth African species (which must have been isolated from its Anstralian congeners for an immense period of time) has a distmet importance.
P. capensis Barnard is deseribell as having the posterior vertical groove upou the lead, the first antema very short, and its flagellum with but five joints, coxac of peracopoola quite distinct, fourth peracopod of male sub-chelate, the basal joint of the first peracopod is figured as setose but withont compling hooks, the second pleopord with penial filament curved only at the apex, short and with terminal setae, the telson with prominent terminal projection-i.e, it has the general facies of the Eastern Australian forms. The imer lobe of the first maxilla, too, has fom phmose setae and two others retaining cilia only at their apices.

In the retention of a secondary contting edge to the right mandible it differs from these species and resembles Amphisomus. Fophereatoicus and Phectotoopsis. The pleon, too, is longer relatively than it is in P. austratis, bnt not longer tham in one or two of the Tasmanian forms and near to that of Amphisopus. Tn the extremely elongated condition of the first free peraeon segment it is nearest to one or two of the subterrancan species.

It is possessen, however, of two fathes in which it is apparently unique, in this family:--(1) the retention of a restige of the imnermost lobe on the secoud maxilla, which is plainty figned by Barnard, but not referred to in the text, in which condition it most nearly approarhes that of the Syncarida; and (2), the existence of phumose setae upon the endopodites of the pleopods-no other

Phreatoicid，so far as I conn discover，latring sotae of any kind upon this ramus．

In view of all these factro，it seems probable that it will become necessary to croate a new gemas to rereive the Sonth African species， bont upon the whole，P ．retpensis may be regarded as approaching most nearly to the Anstralasian sub－alpine forms，while retaining eotain characters undoubtedly primitive，many of these linking mp with Amphisomus，Wophretoicus and Phreatoicopsis．

Ap：n＇t from P^{\prime} ．wianamaltensis，no undoubted fossil Plureatoicid seems to have been recognised．I have harl，montumately，no aceess to the work of Packlaird，quoted by Geoffere Smith，but that anthor＇s recomstrmetion of Acenthotelson stimpsomi would serve，almost without modifieation，for the ancestral Pluratoirid．The elongated head， body with thiteen risible segments practically of miform size，the telson marked off from the last pleon segment，pleon－telsom practically equalling cephalou－peracon（the elongate telsom but an exaggeration of that of P ．spinosus），ploon probably not strongly compressed and without downwirdly developed pleura，the first intenna filiform and moderately long，without accessory flagellum，the second antema without scetle，with no trace of stalked eyes，the first peracopod by way of becombing a grathopod，peraeopods without exopodite not yot divided into two series，with distmet coxae and littl differentia－ tion of more distal ，joints，pleopods with stont basal joint and equal lanelliform rami，the elongate，edual and highly setose rami of the mopods，a walking form，but probably capable of feobly swimming， surbl a form might much more justly be classel with the Phrea－ toicioleal than witle the Symearida．

List of References．

1914 Barmard，K．H．，Amm．S．Afr．Nns．Vol．X，Pt． 7.
1891 Chiltom，（4，Rece．Austr．Mus．，Syctuey，Vol．T，No． 8.
1894 Chilton，（＇．，Tr．Limm．Soc．Lomd．（2）Zool．，Vol．VI，Pt． 2.
1906 Chilton，（ ${ }^{2}$ ．，Tr．N．K．Inst．，Vol．XXXVIII（1905）．
1916 Chilton，（．，Iour．Proc．Roy．Soc．N．S．W．，Vol．I．
1918 Chilton，C．，Jonr．Proe．Roy．Soe．N．s．W．，Vol．L．T．
192日 Chiltor，C．，Trans．Roy．Soc．S．A．，Vol．XLVT．
1904 （xlanert，L．，Jour．Roy．Soc．，W．A．，Vol．X，No． 8.
192：3 Nicholls ams Milner，Jour．Roy．Soc．，W．A．，Vol．X，No． 6.
1924 Niclolls，（土．E．，Jour．Roy．Soc．，W．A．，Yol．X，No． 13.
1920 Nicholls and Barmes，Jour．Roy．Goce，W．A．，Vol．XTT，No． 10.
19I2 Raff，．J．W．，Victorian Naturalist，Vol．XXIX，No． 5.
1900 Silyer，O．A．，Proc．Roy．Sor．V＇ie．，Tol．XII，Pt．』．
1900a Sayce，O．A．，Proe．Roy．Sor．Vic．，Vol．XIII，Pt． 1.
1902 Siyce，O．A．，Proc．Roy．Soe．Vic．，Vol．XIV，Pt．2，
1909 Smitl，G．，Q．J．M．S．，Vol．53，Pt．3．

1909a Smith, G., Trans. Lim. Soc. Lond. (2) Zool., Vol. XI, Pt. 4. 1897 Spencer and Hall, Proc. Roy. Soc. Vic., Vol. IX.

> Explafation of Plates XXV-XXIX.
> Plate XXV.
> All figures of Phreatoicus joyncri, sp. nov.

Fig. 1 Entire animal (male), in side view.
2 First antenna, male.
Qa First antenna, female.
3 Propod and dactyl of second peracopod of male.
\pm Propod and dactyl of third peraeopod of male.
5 Propod and dactyl of fourth peracopod of male.
(6 Propod and dactyl of first peracopod (gnathopod) of male.
(6a Palm of guathopod, more highly magnified, with a single spine of the same, much enlarged.
7 Seventh peracopod of male.
7a Part of dactyl of seventh peraeopod, highly magnified.

Plate XXVI.

All figures of Phreatoicus joyneri, sp. nov.
Fig 8 First maxilla.
8a Imner plate of first maxilla, more lighly magnified.
9 Lower lip.
10 Second maxilla.
11 Maxilliped.
12 Left mandible.
12a Dentate cdge and spinous plate of right mandible.
13 Male appendage.
14 Second pleopod of male.
15 Third pleopod of male.
16 First pleopod of male.

Plate XXVII.

All figures drawn from male of Eophreatoicus hershawi, gen. nov. et sp. nov.
Fig. 17 side view of entire animal.
18 First antema.
19 Second antemas.
20 Gnathopor, with palm more highly magnified.
21 Fourth peracopod.
22 Seventh peraeopod.
23 First pleopot.
24 Basal portion of first pleopod more highly magnified.
25 Second pleopod, with epipodite, exopodite, endopodite, and
penial filament.
26 Penial filament, with apex more highly magnified.

Plate xxvili.

All figures from male of Eophrcatuicus hershawi, gen. nov. et sp. nov. Fig. 27 Maxilliped.

28 Imer plate of maxilliped, more highly maguified, with colupling hook still more enlarged.
29 F'irst maxilla.
30 Part of second peraeopod, showing expanded lobes on ischios and meros.
31 Third pleopod.
32 Fourth pleopod.
33 Fiftli pleopod.
Plate NXIX.
Fig. 34 Left mandible of E. Korshawi.
35 Right mandible of the same.
36 Second maxilla of the same.
37 Uropod of the same, in lateral view.
38 Male appendage of the same.
39 Dorsal view of telson of the same.
40 Dorsal view of telson of P. joyneri.
4I Terminal projection of telson of P. joyneri, more highly magnified, in postero-dorsal view.
42 Sixth pleon segment with uropod and part of telson of P. joyneri, seen from within.
42a Ventral spines from end of peduncle, in same view, more highly enlarged.
43 Uropod of P. joyneri, in lateral view.
43 a Ventral spines from end of peduncle of the same, more highly enlarged.
44 Proximal portion of second Antenna of P. joyneri.

[^0]: *Some of these, kept under similar conditions, in a small woodeu box, survived until my return to Pertli, nearly three weeks later, when, on being placed in water, they shortly unrolled and resumed active existence.

[^1]: *In Pl. XXI, Fig. 1, the length of the first antenna, relative to the second, has been exaggerated-in its natural position, its apex ratrely reaches the terminal joint of the pednucle of the second antema, its total length only equalling the combined lengtl of the three terminal joiuts of the peduncle of that appendage.

[^2]: "This is the case with all of the species of Plocatoicus that I have been able to examine in the hiving condition. In many preserved 4,pecimens also, the pleopods may be seen hanging downwards and then quite obvious.

[^3]: *Its length is equalled, perhaps exceeded, by large cxamples of P. kirkii, var. duncdincnsis, Chilton, which is said to reach ?U.5 mm., and by l. spinosus, Smith ($15-25 m m$.). Ny largest specimen of A. lintoni measured 20 mm . The fossil form P. wianamattenis had an estimated lengtle of 30 mm .

[^4]: *Though possibly itself derived from some form nearer to P. typicus in general appearance.

[^5]: *Tn P. capensis actually longer than the suceceding segment,

